
1

ASETS – An Academic Trading Simulation Platform

Claudiu VINŢE, Alexandru LIXANDRU, Andrei JURUBIŢĂ, Adrian BARDAN1
Bucharest Academy of Economic Studies

claudiu.vinte@ie.ase. ro , alex.lixandru@gmail.com, andrei.jurubita@stud.ase.ro ,
adrian.bardan@a3d.ro

This paper is intended to present the results of our academic research upon a distributed
computing environment dedicated to trading simulation. Our research has been conducted
with the aim of creating a trading simulation platform, that would provide both the
foundation for future experiments with trading systems architectures, components, APIs, and
the framework for research on trading strategies, trading algorithms design, and equity
markets analysis tools.
Mathematics Subject Classification: 68M14 (distributed systems).
Keywords: Trading Systems, Simulation, Distributed Computing, Service-Oriented
Architecture (SOA), Message-Oriented Middleware (MOM), Java Message Service (JMS)

1. Introduction
The initial idea of a trading simulator within academia came along as a necessity, under the
auspices of the Master’s program in Economic Informatics2, which proposed for the first
time, as part of curriculum for the university year 2009-2010, the course upon The
Informatics of the Equity Markets. ASETS is the acronym from the Romanian version of the
Academy of Economic Studies Trading System. Our research has been directed toward
designing a trading environment that would create the opportunity for students to study in
details the investor’s needs from an electronic trading platform, the components of a trading
system and their functionality in a straight through processing approach, and the trading
strategies that can be implemented to corroborate models for automatic (program) trading.
In our view, ASETS platform lays the foundations for multiple directions of research,
concerning electronic transactions on the equity markets [1].
Today’s stock exchanges are high-tech organizations. The main parts of an electronic trading
platform are [2] [3]:

• the user front end, consisting of a trading system and a trading interface (API);
• the network, consisting of access points to a wide area backbone network and

interfaces that are provided to members;
• the back end, which handles the major functions of trading and trade management,

market supervision and control, information dissemination, and provides industry
standard interfaces to settlement organizations, information vendors and market data
vendors.

Through its components, ASETS simulation platform supplies functionality in all these three
areas. Apart from settlement and clearing activities, ASETS covers the entire transactional
process of ordering, order matching, execution generation and capture, trade disseminated
and client portfolio management [4]. In addition, within the simulation environment, there are
real world delayed-prices disseminated to the investors, who can also access the simulated-
market depth for each tradable financial instrument, and the market map.

1 ASETS project involved, in a modularly fashion of design and development, the entire Master’s program series
of students
2 The Master’s program organized by the Department of Economic Informatics, within the Faculty of
Cybernetics, Statistics and Economic Informatics

mailto:claudiu.vinte@ie.ase.com
mailto:adrian.bardan@a3d.ro
mailto:andrei.jurubita@stud.ase.ro
mailto:alex.lixandru@gmail.com

2

2. The approach to trading simulation
The sole traders in a pure order-driven market are the investors who are seeking to buy or sell
shares for their own portfolio purposes. They are sometimes referred to as “the naturals”.
Two basic order types used by naturals in a trading environment are:

• limit orders – a maximum price limit is placed on a buy order, and a minimum price
limit is places on a sell order;

• market orders – the instruction on a market order is simply to buy or sell “at market”,
which means that the order will be matched with the best available position
(depending of the side) existent in the marketplace.

The limit orders, which are entered into a limit order book, establish the prices at which the
market orders will execute. The market is order-driven precisely because the limit orders
placed by some participants set the values at which others can trade by placing market orders.
In such an environment, the limit order placers are the liquidity suppliers, and the market
order traders are the liquidity takers. In an order-driven market, the liquidity builds as limit
orders are entered in the book, and liquidity is drawn down as market orders trigger trades
that eliminate limit orders from the book.
Some participants are motivated to be liquidity providers because, whenever a trade is made,
the transaction price typically favors the limit order placer. For instance, assume that the best
bid set by a limit order placer seeking to buy is 10 monetary units, and that the best offer set
by a limit order placer seeking to sell is 10.5. If a market order to buy arrives, it will execute
at 10.5, or 0.5 monetary units more than the limit order buyer would pay if his or her limit
order were to execute. Similarly, if a market order to sell arrives, it will execute at 10, or 0.5
monetary units less than the limit order seller would receive if his or her order were to be
executed [5]. On the other hand, while the market order trader pays more for a purchase or
receives less for a sale, he or she benefits from trading with certainty and immediacy [6].
Two conditions must be met for an order-driven market to function:

• some participants must be looking to buy at a time when others are looking to sell;
• on each side of the market, some participants must choose to place limit orders while

others must select the market order strategy.

Taking into to account the above-mentioned aspects, we came to the realization that having
only live participants on the marketplace would not create enough liquidity in the simulation
environment and, therefore, we created a specially tailored module for pouring limit orders
into the market, for each tradable financial instrument. This component, Pseudo-Random
Order Generator (PROG), plays in these circumstances the role of a liquidity supplier, while
the live participants, who are allowed to place market orders along with limit orders, benefit
from such a simulation environment as liquidity takers.
ASETS has been designed to reflect a real world, order-driven market structure, aiming to
capture the dynamic properties of price formation. The simulation environment is electronic,
and it currently accepts only two basic types of orders (market and limit).
A trading simulator can be based on various approaches:

• canned data – where quotes, orders, prices and trades are taken from a historic
transaction record, and the live participants trades are done against the historic prices;

• computer-generated data – where the simulation itself creates the entire market
environment, the quotes, and the transactions record; the live participants trades are
done against the simulated prices;

• computer-generated data with real world price seeds – where the computer-generated
orders are placed at price levels departed from the real market prices, although
randomly created within predefined spreads.

3

The canned data approach is limited in two respects. First, a live player’s own orders cannot
affect the record of past prices – they continue to be the past stored prices. In the real world,
the live trader’s orders can affect the evolution of prices in the marketplace. Second, with
canned data, it is not possible to rerun a simulation using different parameter settings and/or
trading strategies, because the transaction record is the product of the specific market that
produced it. On the other hand, with solely computer-generated data, the trading simulation
would lack the connection with the real world prices and market evolution.
ASETS was conceived as a trading simulation environment where live participants’ orders
coexists with computer-generated orders, created departing from delayed prices captured
from the Bucharest Stock Exchange (BSE) [7]. The assumption was that only the orders
placed by the live participants would not be enough for sustaining the liquidity of the
simulation environment [8]. Consequently, a special component has been design (Pseudo-
Random Order Generator – PROG) to play the role of a market maker, by placing regularly
buy and sell orders, for each tradable financial instrument, at prices confined within
predefined (parameterized) spreads from the delayed prices received from BSE. Following
this approach, ASETS offers the ability of conducting simulation-trading against a
marketplace very similar to the one supplied by BSE. Based on the delayed market-data1,
PROG module is designed to take into account, when it comes to order generation, the
evolution of the real market in terms of price variation, order volume, and number of trades
already completed. Furthermore, by reproducing the key parameters of a real marketplace,
ASETS platform can offer a virtually even more active and liquid trading environment,
creating the fundaments for our intended future research in trading algorithms and market
analysis tools.

3. A service-oriented architecture with an underlying messaging middleware
One of desiderates that we embraced from the initial phase of this research was the
commitment to employing open source technologies throughout the trading simulation
environment. Our goal has been to provide to the users of the trading simulation system a
convenient way of accessing the platform from the internet, through the means of employing
a servlet responsible for HTTP tunneling [9] [10]. Essentially, ASETS graphical user
interface (Trading GUI) has been implemented as a Java applet, which can be launched from
a web browser. The potential user (investor) has first to register on the ASETS web site,
choosing an user name and obtaining an automatically generated password (which may be
changed later on). Trading GUI applet is the only component of the system that the
participants at the trading activity come in contact with. All the other components of the
simulation platform are transparent to the end-user, and create an environment that replicates
the perspective of being connected to a live trading marketplace. The architectural design is
one of service-orientation (SOA). Each component of the system exposes its functionality, as
a service provider, to the other components [11]. The requests for services and the supplies of
replies are flowed through a message-oriented middleware (MOM). The intention and the
format of this paper do not afford us the necessary space to go into all the details of ASETS
message-oriented trading API. For further references, can be consulted our website:
www.iem.ase.ro. A MOM makes use of a message provider (broker) to mediate the
messaging operations. In this parading, the elements of a MOM-based system are client
applications, messages, and MOM messaging provider. Under the broad umbrella of client
applications, can be in fact identified cetain applications that play functionally the role of a
client, and others that have the functional role of a server. All the system applications are
perceived as clients of the MOM messaging provider [12]. Using a MOM system, a client

1 Along with prices, Delayed market-Data Feed (DDF) supplies information upon trading volume, value,
number of trades etc.

http://www.iem.ase.ro/

4

makes an API call to send a message to a destination managed by the provider. The call
invokes provider services to route and deliver the message to the consumer. Once it has sent
the message, the producer can continue the processing flow, relying on the fact that the
messaging provider retains the message until a receiving client retrieves it. In this manner, the
MOM-based model, in connection with the message provider, open the possibility of creating
a system of loosely coupled components. Such a system can continue to function reliably,
without downtime, even when individual components or connections fail. The client
applications are consequently effectively relieved of every communication issue, except that
of sending, receiving and processing messages. Through an administrative tool coupled with
the messaging provider the user can monitor and tune the performance of the communication
flows. Fig. 1 shows the architecture of ASETS simulation platform. The functional services
(modules) are interconnected using ASETS API, described in [13].

Physical
Destinations

Java

Client
Runtime

Order
Management
Server (OMS)

Java

Client
Runtime

Portfolio
Management
Server (PMS)

Trades,
Portfolios

Clients,
Orders,

Executions

Java Client
Runtime

Exchange
Simulation

Engine
(ESE)

Persisted Messages
and Broker State

Configuration Files
and Logs

User Repository

JMS
Provider

HTTP Tunnel
Servlet

Web Server

Java Client
Runtime

Trading
GUI

Firewall

Java Client
Runtime

Trading
GUI

Java Client
Runtime

Trading
GUI

. . .

SOAP
Client

Delayed Data
Feeds (DDF)

Bucharest
Stock

Exchange
(BSE)

Prices,
Companies,

Indices

Java Client Runtime

Pseudo-Random
Order Generator

(PROG)

Java Client Runtime

Java Client Runtime

Capital Allocation
through Rectangular
Distribution Engine

(CARD)

Fig. 1 – The architecture of ASETS trading simulation platform

5

ASETS API has been designed and implemented in conjunction with Java Message Service
(JMS) API. JMS specification captured, from its conception, the essential elements of a
generic messaging systems, namely:

• the concept of a messaging provider that routes and deliver messages;
• distinct messaging patterns, or domains such point-to-point messaging and pub-

lish/subscribe messaging;
• facilities for synchronous and asynchronous message receipt;
• support for reliable message delivery;
• common message formats such as text, byte and stream.

Summarizing, messaging is a very effective means of building the abstraction layer within
SOA, needed to fully abstract a business service (functionality) from its underlying
implementation. Through business messaging, the business service (say, the order booking)
does not need to be concerned about where the corresponding implementation service is
located, what language it is written in, what platform it is deployed on, or even the name of
the implementation service. All the above-mentioned elements have equally constituted the
reasons why we turned to Open Message Queue (OpenMQ), as the open source MOM
implementation of JMS, for designing ASETS architecture based on it.

4. System components and functionality
ASETS trading simulation platform has a modular service-oriented design. Each module
plays a precise role within the system, the simulation environment being conceived to deliver
a real-world-like trading experience to a potential investor. The main modules and their
functionality are described below.
Order Management Server (OMS) is chiefly responsible for processing orders placed by the
market participants, managing user connections, and channeling the executions generated by
the order-matching engine back to the users.
Portfolio Management Server (PMS) delivers the trade generation processing, and client
portfolio maintenance.
Exchange Simulation Engine (ESE) is the module where the order-matching takes place. It
implements the matching algorithm, and plays the role of a stock exchange.
Delayed-Data Feed (DDF) consists of a collection of web-clients that connect to
corresponding web services, intended to capture delayed market-data disseminated by The
Bucharest Stock Exchange (BSE). The feed gathers data regarding the financial instruments
traded on BSE, listed companies and their status, prices, volumes, exchange indices etc. The
captured data is stored in the system database. Delayed prices are also published to a specific
topic within the messaging provider, topic at which the system components interested in them
can subscribe.
Pseudo-Random Order Generator (PROG) is the module that creates buy and sell limit
orders, departing from the real market data captured by DDF from BSE, and place them on
the simulated marketplace offered by ESE. As we mentioned earlier, this module provides the
needed liquidity to an environment with an expectedly modest trading activity coming from
live participants, when compared to a real stock market.
Capital Allocation through Rectangular Distribution Engine (CARD) is the component that
generates the rectangular distribution for creating the map of the market. The market map is a
GUI feature that provides to the investor a tridimensional perspective of the stock market [14].
The area of a rectangle corresponds to the market capitalization of a listed company. The color
of a rectangle is based on the price variation of the stock, within the considered interval of
time:

• nuances of red for loses;

6

• black for stagnation of stock price;
• nuances of green for price gains on the market.

Trading GUI is the graphical interface offered to the users of ASETS platform. The GUI can
be launched from a web browser and it runs as a Java applet within browser’s window. Once
the investor created a valid user name from ASETS website, and that user name was enabled,
then the GUI applet can be launched and the investor may be able to connect to the ASETS
simulation platform (Fig. 2).

Fig. 2 – The main workbench of ASETS GUI, containing the login window

Once the user name and the password are authenticated by the system, the investor will be
able to retrieve his or her trading activity realized during the current trading session. ASETS
platform provides daily trading sessions, meaning that the investor orders are valid within the
trading session they were placed in. At the end the day, all the orders that were not executed,
or not fully executed, are considered as canceled, and they are not carry on to the next trading
session. The system does not handle good-till-canceled (GTC) type of orders.
The workbench of ASETS GUI is organized in two panels, for Orders and Executions. The
Orders panel contains all the orders the user placed during the current trading session. Each
order has assigned to it an order (system) status and a market status. From the trading system
perspective, an order may be in one of the following states:

• ADD, newly created order, which has not been accepted by the market (ESE) yet;
• ADDED, newly created order accepted by the market;
• ADD_FAILED, newly created order, which was not accepted by the market;
• UPDATE, order update, which has not been accepted by the market yet;
• UPDATED, order update accepted by the market;
• UPDATE_FAILED, order update, which was not accepted by the market;
• CANCEL, order cancel, which has not been accepted by the market yet;

7

• CANCELED, order cancel accepted by the market;
• CANCEL_FAILED, order cancel, which was not accepted by the market;
• EXECUTED, order executed, either fully or partially.

From the market perspective, a trading order may fall in one of the below categories:
• PENDING, if there was not received any acknowledgement from the market (ESE);
• ON_MARKET, when the order was acknowledge to have reached the market;
• PARTIALLY_EXECUTED, when the ordered quantity was partially filled;
• FULLY_EXECUTED, when the ordered quantity was entirely satisfied;
• CLOSED, when the order was successfully canceled and removed from the market.

The Executions panel contains the market-generated executions, corresponding to the orders
placed by the user, and which were captured by OMS and supplied to GUI (Fig. 3).

Fig. 3 – ASETS GUI with Orders and Executions panels

From the GUI, the investor has the ability to place new buy and sell orders. The total value of
the buy orders has to be within the limits of a system defined cash amount, available to each
investor once he or she registered into the system. As for the sell orders, the investor may
only sell a financial instrument that possesses in his o her portfolio. ASETS simulation
platform currently does not support short selling, but this aspect may be subject to change in
the future. The user interface for order entry was designed to help investor make convenient
choices, in terms of symbol for the desired financial instrument to be ordered, and the type of
order that he or she intends to place (market or limit). This approach also reduces the chance
of potential input errors from the investor’s part. The principle followed here was to ensure a
robust input-data validation locally, in order to minimize the probability of action failure, and
reduce the overall data flow among component systems. A successfully placed order can be
subsequently changed (updated) or canceled.

8

The order update operation allows only for:
• changing a limit order into a market order, but not the vice versa;
• decreasing the ordered quantity, for both market and limit orders.

Fig. 4 – The input window for placing a new order (buy side)

The order placement window is shown in Fig. 4. To place in a sell order, the investor would
need to know exactly what financial instruments he or she possesses, and in what quantity.
ASETS GUI offers to the investor the ability to view and save his or her portfolio of acquired
financial instruments, keeping its value up to date through a price feed supplied by DDF, as
Fig. 5 illustrates.

Fig. 5 – Investor’s portfolio window

9

Through the GUI, the live participant to the simulation environment is also able to consult the
market depth for a given trading symbol, as Fig. 6 shows. Furthermore, the investor can

Fig. 6 – Market depth window, showing the current orders on the exchange for symbol BRD

benefit from the market map tridimensional perspective (Fig. 7).

Fig. 7 – Market map window, containing all the symbols listed on sections I, II, III of BSE

10

5. Conclusions and future directions of research
Our research has been directed toward designing a trading environment that would create the
opportunity for the students to study in details the investor’s needs from an electronic trading
platform, the components of a trading system and their functionality in a straight through
processing approach, and the trading strategies that can be implemented to corroborate
models for automatic (program) trading. In a simulation-trading environment, human agents
compete on resources created by computer algorithms, within a scenario-driven market place.
The components that create these scenarios have to sense the trading patterns of the human
investors, and act accordingly. By designing a trading API for ASETS platform based on a
message-oriented middleware, we achieved a fine balance, concerning the overall system
response, availability, reliability, and flexibility in accepting future changes and extensions.
The use of messaging, as part of the overall service-oriented trading simulation, allows for
greater architectural flexibility and agility. These qualities are achieved through the use of
abstraction and decoupling. With messaging, subsystems, components, and even services can
be abstracted to the point where they can be replaced with little or no knowledge by the client
components. Architectural agility is the ability to respond quickly to constantly changing
environment.
In our view, ASETS platform lays the foundations for multiple directions of research upon
electronic transactions on the equity markets. Based on the current results, we intend to focus
our research on two primary domains: market analysis (trend identification) and algorithmic
trading. These two domains are cascading style interconnected: an efficient model for
algorithmic trading cannot be conceived without the ability to identify or predict, in a timely
fashion, the market directions of evolution.

Acknowledgements
We would like to extend our thanks and appreciations to the entire 2009-2010 Master’s
program series of students, who contributed to ASETS project, in a modularly fashion of
design and development. Special thanks have to go the following students, who willingly
devoted their time and energy in the final integration phase of the project: Alexandru
SIROMASCENCO (DDF, PROG), Cristina PAUNĂ (GUI), Andreea MARCU (PMS), Irina
MARCU (PMS), Mădălina APOSTOL (ASETS website), Gheorghe SOROCEAN (GUI),
Sabina Monica POPESCU (API), Irina MANEA (ESE), Ştefan DRAGOMIR (PROG).

References:
[1] McIntyre Hal (editor) – Straight Through Processing - The Summit Group Publishing,

Inc., New York, 2004
[2] McIntyre Hal (editor) - How the U.S. Securities Industry Works - Updated and Expanded

in 2004 - The Summit Group Press, New York, 2004
[3] Schwartz A. Robert, Francioni Reto - Equity Markets in Action (The Fundamentals of

Liquidity, Market Structure & Trading) - John Wiley & Sons, Inc., 2004
[4] Harris Larry – Trading and Exchanges – Oxford University Press, Oxford, 2003
[5] Vinţe Claudiu - The Informatics of the Equity Markets - A Collaborative Approach – in

Informatica Economică vol. 13, no. 2/2009, INFOREC, Bucharest, 2009
[6] Katz Jeffrey Owen, McCormick L. Donna – The Encyclopedia of Trading Strategies –

McGraw-Hill, New York, 2000
[7] Tanenbaum S. Andrew, Maarten van Steen - Distributed Systems - Principles and

Paradigm - Vrije Universiteit Amsterdam, The Netherlands, Prentice Hall, New Jersey,
2002

[8] Vinţe Claudiu - Upon a Trading System Architecture based on OpenMQ Middleware – in
Open Source Scientific Journal, Vol.1, no.1, 2009 - http://www.opensourcejournal.ro/

http://www.opensourcejournal.ro/

11

[9] Sun Microsystems, Inc. – Java Message Service - http://java.sun.com/products/jms/
[10] Sun Microsystems, Inc. - Open Message Queue: Open Source Java Message Service

(JMS) - https://mq.dev.java.net/
[11] Erl Thomas (with additional contributors) - SOA Design Patterns – Prentice Hall by

SOA Systems Inc., New Jersey, 2009
[12] Richards Mark, Monson-Haefel Richard, Chappell A. David - Java Message Service

(Second Edition) – O’Reilly Media Inc., Sebastopol, California, 2009
[13] Vinţe Claudiu – Upon a Message-Oriented Trading API – in Informatica Economica

Journal vol. 14, no. 1/2010
[14] Vinţe Claudiu – Upon a Tridimensional Perspective of the Stock Market – proceedings

of The Ninth International Conference on Informatics in Economy, May 7-8 2009

Claudiu VINŢE has over thirteen years experience in the design and
implementation of software for equity trading systems and automatic
trade processing. He is currently CEO and co-founder of Opteamsys
Solutions, a software provider in the field of securities trading
technology and equity markets analysis tools. Previously he was for over
six years with Goldman Sachs in Tokyo, Japan, as Senior Analyst
Developer in the Trading Technology Department. Claudiu graduated in
1994 The Faculty of Cybernetics, Statistics and Economic Informatics,
Department of Economic Informatics, within The Bucharest Academy

of Economic Studies. He holds a PhD in Economics from The Bucharest Academy of
Economic Studies. Claudiu has also been given lectures and coordinated the course and
seminars upon The Informatics of the Equity Markets, within the Master’s program organized
by the Department of Economic Informatics. His domains of interest and research include
combinatorial algorithms, middleware components, and web technologies for equity markets
analysis.

Ionuţ-Alexandru LIXANDRU graduated The Bucharest Academy of
Economic Studies in 2008. He is a M. SC student in the field of
Economic Informatics within The Faculty of Cybernetics, Statistics and
Economic Informatics, with the M. SC thesis Distributed System for
Supporting Stock Exchange Transactions in a Simulation Environment.
Alexandru has been for over 3 years with TechTeam Global, within the
Global Business Applications Department. His main areas of interest are
systems integrations, web technologies, software maintainability, and
knowledge management.

Andrei JURUBIŢĂ is student of The Bucharest Academy of Economic
Studies, and he works as a web programmer for Globalsys Solutions.
Andrei graduated in 2008 The Faculty of Cybernetics, Statistics and
Economic Informatics, Department of Economic Informatics, and he is
currently following the Master’s program in Economic Informatics. He
was awarded with a prize at the Informatics Olympiad in High School,
and he was awarded 3rd place at Infomatrix 2004 with “C++ for Kids”,
working within a team of four. His domains of interest and research
include compression, cryptography, distributed systems, operating

systems.

https://mq.dev.java.net/
http://java.sun.com/products/jms/

12

Adrian-Ion BARDAN graduated in 2008, and has a Bachelor Degree in
Informatics from the University of Bucharest. He will graduate in June
2010 the Master’s program in the field of Economic Informatics within
the Bucharest Academy of Economic Studies, with the final thesis upon
Applying OCR algorithms using a distributed system. His main area of
expertise includes the design and development of web applications,
while being also interested in software architectures, new web
technologies, Java EE programming, and mobile applications
development.

